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Abstract

Recent diabetes research has unveiled novel pathways offering potential therapeutic interventions to slow the disease’s progression and alleviate 
associated health complications. Particularly, advancements in high-throughput multi-omics technologies over the past two decades have spotli-
ghted the gut microbiota, a rich ecosystem of microorganisms in the digestive tract, as a pivotal area of study. This body of research has established 
a link between dysbiosis, an imbalance in these microbial communities, and various diseases, including metabolic disorders. This review focuses on 
the crucial role of the gut microbiota in obesity and diabetes, highlighting its emergence as a promising target for treatment strategies. By detai-
ling the alterations in gut microbiota and associated metabolites in obesity and diabetes, along with the therapeutic potential of fecal microbiota 
transplantation in these diseases, we underscore the complexity and potential of targeting these microbial communities for health benefits. As we 
look to the future, the importance of translating this knowledge into clinical applications becomes paramount, setting the stage for innovative 
treatments that harness the power of the gut microbiota to combat diabetes and other metabolic diseases.
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Resumo

Estudos recentes sobre a diabetes revelaram numerosas vias que oferecem potenciais intervenções terapêuticas para atrasar a progressão da 
doença e aliviar as complicações de saúde associadas. Nas últimas duas décadas os avanços nas tecnologias multi-ómicas de elevado rendimento 
destacaram a microbiota intestinal, um ecossistema rico em microrganismos no trato intestinal, como uma área de estudo fundamental. Este corpo 
de investigação estabeleceu uma ligação entre a disbiose, um desequilíbrio nessas comunidades microbianas, e várias doenças, incluindo distúr-
bios metabólicos. Esta revisão centra-se no papel crucial da microbiota intestinal na obesidade e na diabetes, destacando a sua emergência como 
um alvo promissor para a intervenção terapêutica. Ao detalhar as alterações na microbiota intestinal e nos metabolitos associados na obesidade e 
na diabetes (tipos 1 e 2), juntamente com o potencial terapêutico do transplante de microbiota fecal nestas doenças, sublinhamos a complexidade 
e o potencial de modular estas comunidades microbianas para obter benefícios para a saúde. Ao olhamos para o futuro, a importância de traduzir 
este conhecimento em aplicações clínicas torna-se primordial, preparando o terreno para tratamentos inovadores que aproveitem o poder da 
microbiota intestinal para combater a diabetes e outras doenças metabólicas.
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> INTRODUCTION

Over the past few decades, type 2 diabetes (T2D) resear-
ch has extensively explored mechanisms such as insulin 
resistance, glucose utilization, beta cell failure, and 
chronic low-grade inflammation. (1) Building upon this 

foundation, a significant evolution in diabetes treat-
ment has recently emerged through the study of the 
glucagon-like peptide-1 (GLP-1) and its receptor. GLP-1, 
an incretin hormone, plays a crucial role in enhancing 
insulin secretion in a glucose-dependent manner, thus 
improving glycemic control. (2) The development and 
use of GLP-1 receptor (GLP-1R) agonists have revolutio-
nized diabetes management, not only addressing blood 
glucose levels but also contributing to weight loss and 
potentially ameliorating beta cell function. (3,4) Interes-
tingly, GLP-1 is produced and secreted by the L cells lo-
cated in the gut, in response to food intake. (2,5) This con-
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both highly efficacious and minimally detrimental in 
terms of side effects.

> MICROBIOTA  

The human microbiota comprises all microorganisms 
living within our bodies, orchestrating a delicate balan-
ce between health and disease. (15,16) These microbial 
communities, distinct in their composition and localized 
within various ecosystems such as the gut, oral cavity, 
respiratory system, and skin, play pivotal roles in our 
physiological processes. (16,17) The advent of microbiota 
research has unveiled the critical role of microbiota in 
health and disease, particularly pointing to the gut 
microbiota’s fundamental importance in maintaining 
overall health. (17,18) The human gastrointestinal tract is 
home to a vast and diverse microbial community, com-
posed of about 100 trillion microorganisms, which sur-
passes the microbial richness of any other body region. 
This rich mosaic nestled within our gut comprises bacte-
ria, archaea, fungi, viruses, and protozoa, and forms a 
complex ecosystem that interacts with its host in nume-
rous ways. (17,19,20) These diverse populations of microor-
ganisms can either be harmful or beneficial to the host, 
thus negatively or positively impacting health. (15,21) For 
this reason, numerous researchers are seeking to identi-
fy a unique health versus disease signature within these 
microbial communities. (22-24) This quest, however, has 
proven to be challenging due to the diversity of the mi-
crobiome and the individualized nature of microbial 
compositions influenced by environmental factors, and 
the dynamic interactions between microbial communi-
ties and the host’s physiology. Each of these elements 
contributes to the intricate puzzle researchers are stri-
ving to solve, in the hope of harnessing the microbiota’s 
potential to revolutionize medicine. 

> GUT MICROBIOTA

Hippocrates, acclaimed as the father of Western medici-
ne, recognized the link between gut health and systemic 
health, a notion increasingly validated by modern scien-
ce, stressing the timeless wisdom that all disease begins 
in the gut. Emerging research defines the gut as a cen-
tral regulator of host physiology with gut dysbiosis 
emerging as an obesogenic/diabetogenic factor and 
bariatric surgery reversing the dysbiosis pattern, highli-
ghting gut health’s role in obesity and diabetes mana-
gement. (20,25-27) It has been postulated that dysfunctio-
nal gut microbiota fosters an imbalance detrimental to 
host health and underpins the connection to the patho-

nection between GLP-1 and the gut highlights the gut’s 
significant role not only in nutrient absorption but also 
in metabolic regulation and the potential for therapeu-
tic interventions targeting the gut in diabetes manage-
ment. Building upon the concept that the gut plays a 
critical role in T2D management, it is noteworthy to 
mention that numerous studies have established a link 
between GLP-1R agonists and changes in the composi-
tion of gut microbiota. (6-10) These effects are attributed 
to the agonists’ ability to modify gastric emptying rates 
and gut transit timing, as well as to alterations in the 
gut’s internal milieu, such as pH and nutrient availability. 
For an in-depth exploration of this topic, we refer to 
another review. (11) Furthermore, recent findings suggest 
a link between metformin, a leading oral anti-diabetic 
drug, and the gut microbiome. (12) While the intricacies 
of this relationship demand further elucidation, the au-
thors suggested that metformin’s therapeutic efficacy 
might hinge on its ability to modulate the gut microbio-
me. Specifically, by increasing the abundance of certain 
beneficial bacterial strains that generate health-promo-
ting short-chain fatty acids (SCFAs), such as butyrate and 
propionate, along with a metabolite known as agmati-
ne. (12) Although it remains premature to definitively as-
sert that these microbiota-mediated shifts underpin the 
advantageous impacts of metformin and GLP-1R ago-
nists on T2D management, this hypothesis suggests an 
additional mechanism through which these antidiabetic 
agents may exert their regulatory influence over T2D. 
While the significant biological and potential therapeu-
tic roles of gut microbiota in various disorders are in-
creasingly recognized, the regulatory approval of such 
interventions remains sparse. To date, the U.S. Food and 
Drug Administration has only approved one oral-fecal 
microbiota product. This treatment is used to prevent 
the recurrence of Clostridioides difficile infection in pa-
tients previously treated with antibacterial agents for 
recurrent infection episodes. (13) As the scientific com-
munity continues to unravel the multifaceted roles of 
the gut microbiota in health and disease, the anticipa-
tion grows for an expanded arsenal of microbiota-based 
therapies. These would not only target recurrent infec-
tions but also address a broader spectrum of diseases 
where dysbiosis plays a critical role, marking a new pe-
riod in medical treatment and patient care. (14) Conse-
quently, the paramount challenge we face today is to 
elucidate the intricate interactions between the gut mi-
crobiota and its host that govern the initiation and pro-
gression of metabolic disorders. This pursuit not only 
holds the promise of uncovering novel therapeutic stra-
tegies but also aspires to achieve treatments that are 
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genesis of prevalent metabolic disorders, including obe-
sity, T2D, non-alcoholic liver disease, cardio-metabolic 
diseases, and malnutrition. Moreover, this imbalance is 
also associated with inflammatory bowel disease. (20,21) 

Beyond its well-established role in food digestion, the 
gut microbiome is involved in regulating gut endocrine 
functions, protecting against pathogens, and orchestra-
ting immune and neurological responses. (20,28) Further-
more, the gut microbiome modifies drug action, elimi-
nates toxins, and produces several metabolites that 
significantly impact the host’s metabolism. (17,20,21) One of 
the open questions in the field is: How does gut micro-
biota influence overall organism’s health? Although va-
rious mechanisms have been proposed to explain this 
complex interaction, the precise pathways remain a 
subject of ongoing research. A compelling and simpli-
fied hypothesis centers on the interplay between bene-
ficial and harmful microbial species that influence host 
health, primarily through the differential immune res-
ponses elicited in the host due to the production of uni-
que bacterial metabolites that cross from the gut into 
the bloodstream. (29,30) Interestingly, this variation can 
be explained by differences in how these bacterial com-
munities metabolize the nutrients consumed by the 
host, as well as their distinct effects on the intestinal 
barrier’s integrity. (31,32) Importantly, beneficial bacteria 
are capable of producing metabolites that offer health 
advantages to the host. (33,34) Alterations in the integrity 
of the gut mucosa barrier are associated with chronic 
inflammation and the onset and progression of meta-
bolic diseases. (35,36) 
The effect of a high-fat diet on the gut microbiota com-
position is among the most studied in the field, dis-
playing severe shifts in microbial signatures. (37) This em-
phasizes the critical role of diet in shaping gut 
microbiota and its consequential effects on host health 
and disease susceptibility. Demonstrating an altered 
bacterial signature in association with a disease is one 
thing; asserting that this alteration causes the disease is 
another. The chicken-and-egg dilemma persists, we are 
yet to ascertain whether changes in the gut microbiota 
are a precursor to disease or a consequence thereof. The 
use of germ-free animals and the transfer of bacterial 
cultures to such mice have been pivotal in unraveling the 
interactions between gut microbiota and host health. 
Fecal microbiota transplantation (FMT), wherein micro-
biota from healthy individuals is transferred to metaboli-
cally compromised recipients, has shown promise. (38) 
Such interventions enhance insulin sensitivity and mitiga-
te weight gain in recipients, providing a window into the 
potential causative roles of microbiota in disease. (39-41) 

Nonetheless, these findings, while groundbreaking, hi-
ghlight the complexity of establishing clear causal rela-
tionships. 

> INTERPLAY BETWEEN GUT MICROBIOTA AND 
METABOLIC DISORDERS

Obesity 

Obesity, a prevalent global health challenge, is a risk fac-
tor for T2D, with both conditions intertwined through 
shared molecular pathways, namely insulin resistance 
and a state of subclinical chronic inflammation. (42,43) In 
the evolving research of obesity’s etiology, the gut mi-
crobiota, along with their metabolically active bypro-
ducts, have emerged as novel players in modulating 
host biological functions that include appetite control 
and body weight regulation. (44-47) A landmark discovery 
in this area was the evidence that the transplantation of 
gut microbiota from obese donors could induce weight 
gain in otherwise lean mice, casting a spotlight on the 
gut microbiome’s role in obesity’s onset and progres-
sion. (16,20,48) Subsequent studies have elucidated that 
obese individuals typically display reduced diversity in 
their fecal bacteria composition. This loss of microbial 
diversity was correlated with an array of metabolic dis-
turbances, including elevated levels of body fat, dyslipi-
demia, impaired glucose metabolism, and increased in-
flammation. (16,20,49) These findings suggest a potential 
avenue for therapeutic interventions targeting the mi-
crobiome to combat obesity and its related metabolic 
sequelae.
The narrative of gut microbiota’s role in obesity further 
unfolds with specific bacterial phyla emerging into the 
spotlight, specifically, there is an increase in butyrate-pro-
ducing Firmicutes and a decrease in Bacteroidetes. Mo-
reover, higher levels of Eubacterium ventriosum and Ro-
seburia intestinalis are linked to obesity. In contrast, 
butyrate producers such as Oscillospira spp. and Metha-
nobrevibacter smithii were associated with leanness. (50-52) 
Adding another layer to this intricate story, the gut mi-
crobiota of obese individuals is more efficient at extrac-
ting energy from their food compared to non-obese 
individuals. (16,53,54) This enhanced ability to harvest ener-
gy from the diet impacts the host’s energy balance. 
Thus, not only the composition but also the functionali-
ty of the gut microbiota are key factors in obesity deve-
lopment. (55) 
One particular bacteria present in our guts, A. muciniphi-
la, has gained increasing attention for its beneficial heal-
th effects. (56) First, studies in rodents have demonstrated 
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that treatment with A. muciniphila can reduce obesity 
and associated conditions, including glucose intoleran-
ce, insulin resistance, liver steatosis, and gut permeabili-
ty. (57,58) Second, even pasteurizing A. muciniphila exerts 
positive effects on fat accumulation, insulin resistance, 
and glucose tolerance, also in rodent models. (59) Most 
importantly, in a randomized, double-blind, placebo-con-
trolled trial, administering supplements of either live or 
heat-inactivated A. muciniphila to overweight and obese 
participants resulted in decreased insulin levels, improved 
insulin sensitivity, and beneficial changes in blood indica-
tors of liver dysfunction and inflammation. (60) These fin-
dings, although from a study involving a small group of 
participants, collectively highlight the potential of A. 
muciniphila as a promising therapeutic agent in the bat-
tle against obesity and its metabolic complications.
Building on the narrative that the composition and 
functionality of the gut microbiota are pivotal in the de-
velopment of obesity, FMT emerges as a novel and pro-
mising approach. Interestingly, FMT from both mice and 
humans submitted to bariatric surgery into germ-free 
recipients results in weight loss by mechanisms that re-
main to be elucidated. (26,40,61) Although FMT is a promi-
sing therapeutic option for obesity, further investigation 
is required to define which and how specific gut bacte-
rial signatures mechanistically control obesity. Such insi-
ghts are essential for developing targeted interventions 
that utilize microbiota to combat health issues associa-
ted with obesity. (20) 

Type 1 Diabetes 

Dysbiosis of gut bacteria is linked to T1D pathogenesis, 
with a growing number of studies suggesting that altera-
tions in gut microbiota composition increase susceptibi-
lity to and progression of T1D. (62-66) Individuals with T1D 
exhibit distinct gut microbiota differences compared to 
healthy individuals, with variations in specific phyla, dis-
playing higher levels of Christensenella and Bifidobacte-
ria. (17,66,67) Additionally, these individuals tend to have di-
minished levels of bacteria that produce SCFAs, which 
are essential for mitigating chronic inflammation and 
maintaining intestinal homeostasis. (17) Moreover, other 
studies report lower levels of R. faecis, F. prausnitzzi, and 
Intestinimonas in individuals with T1D compared to heal-
thy counterparts. (17,68) This accumulating evidence hi-
ghlights the importance of the gut microbiota in T1D, 
pointing towards its potential as a target for therapeutic 
interventions to improve disease outcomes. (17,69) 
T1D, an autoimmune condition, results from the immu-
ne system attacking insulin-producing beta cells, lea-

ding to chronic inflammation within these cells, therefo-
re impairing insulin production and blood glucose 
regulation. The gut microbiota’s interaction with the 
immune system can exacerbate this inflammation, cen-
tral to T1D’s pathogenesis. This dysregulation highlights 
the intricate interplay between our microbiome and im-
mune health in the context of autoimmune diseases. (17) 

In a recent clinical trial, researchers explored the effects 
of autologous, using the patient’s microbiota, versus 
allogeneic, using microbiota from healthy donors, FMT 
on the progression of beta cell loss of function. Interes-
tingly, the trial found that participants receiving autolo-
gous FMT experienced a preservation of beta cell func-
tion for 12 months after undergoing three consecutive 
FMT procedures. This effect was notably distinct from 
the outcomes observed with allogenic FMT from healthy 
donors, which had previously shown promise in slowing 
beta cell function decline in other major studies. The be-
neficial impact of autologous FMT was linked to signifi-
cant changes in the mucosal microbiota of the small in-
testine, suggesting that reintroducing one’s microbiota 
could beneficially modify the immune response initiated 
in the gut. (70) These findings highlight the potential of 
autologous FMT in managing beta cell function and em-
phasize the need for further research in larger trials to 
fully understand the mechanisms involved.

Type 2 Diabetes 

Regarding T2D, similar to the other metabolic disorders 
here explored, the development of this condition has 
been connected to variations in gut microbiota composi-
tion. (22,71-73) For instance, one study showed that indivi-
duals with T2D tend to have an increased abundance of 
certain groups of bacteria, including Bacteroidetes and 
Proteobacteria, alongside a decrease in Firmicutes. (16,17,19,71) 
However, some studies have found the opposite trend, 
an increase in both Firmicutes and Proteobacteria and a 
decrease in Bacteroidetes in individuals with T2D com-
pared to those without the condition. (74) Meanwhile, 
other study has not observed any significant differences 
in the microbiota composition among subjects. (75) The 
observed disparities in microbial compositions across 
studies could be explained by substantial interindividual 
variation, thought to stem from various factors inclu-
ding age, diet, health status, genetic predispositions, 
environmental conditions, and medication use. Conse-
quently, a cautious approach is warranted when compa-
ring findings across different studies, bearing in mind 
these potential sources of variation.
Metabolites produced by the gut microbiota, such as 



Revista Portuguesa de Diabetes. 2024; 19 (1): 20-31 The Hidden Link Between Gut Microbiota and Vascular Dysfunction in Diabetes 

24

SCFAs, trimethylamine-N-oxide (TMAO), and those de-
rived from tryptophan, have been associated with the 
development of T2D. (19,20) SCFAs play a crucial role in re-
gulating glucose metabolism and insulin sensitivity via 
several signaling pathways. (17) SCFAs can stimulate the 
release of GLP-1 and peptide YY, which enhance insulin 
secretion and decrease glucagon levels. (17,19,76) Additio-
nally, butyrate, a specific type of SCFAs, contributes to 
the maintenance of the intestinal epithelial barrier. No-
teworhty, the barrier is frequently compromised in indi-
viduals with T2D, largely due to inflammation. (17,19,77,78) 
Therefore, a decrease in SCFAs-producing bacteria, tho-
se belonging to the phylum Firmicutes may contribute 
to the onset of T2D. (17,19) TMAO, another relevant meta-
bolite formed in the liver from trimethylamine, a pro-
duct of the metabolization of nutrients by gut microbio-
ta, has been associated with an increased risk of T2D. 
TMAO has the potential to block hepatic insulin signa-
ling and trigger inflammation in the adipose tissue, the-
refore exacerbating insulin resistance. (19,79) 
While several mechanisms have been proposed to ex-
plain the connection between gut microbiota and T2D, 
including the regulation of inflammation, gut permeabi-
lity, SCFAs production, modulation of bile acid metabo-
lism, and effects on incretin hormones — more studies 
are needed to fully understand these complex interac-
tions. Each of these pathways suggests that the gut mi-
crobiota plays a multifaceted role in influencing glucose 
metabolism, insulin sensitivity, and overall metabolic 
health. However, the precise mechanisms and their rela-
tive contributions to the pathogenesis of T2D remain to 
be fully elucidated, underscoring the need for further 
research in this promising area. (17) Understanding the in-
terrelationship between T2D and the gut microbiota is 
imperative for the development of personalized thera-
peutic strategies aimed at effectively managing this con-
dition and mitigating its associated complications.

> TYPE 2 DIABETES AND ITS COMORBIDITIES: 
FOCUS ON VASCULAR ALTERATIONS

Elevated blood glucose levels, a hallmark of T2D, result 
in substantial organ damage over time. This includes 
vascular alterations divided into macrovascular diseases, 
such as cardiovascular disease (CVD), cerebrovascular 
disease, and peripheral arterial disease, and microvascu-
lar diseases, such as diabetic nephropathy, retinopathy, 
and neuropathy. (80-82) The endothelium, critical for vas-
cular functions, thus becomes a focal point in T2D pro-
gression. From the onset of T2D, endothelial function is 
compromised, significantly associated with negative 

health outcomes. The exact cause of this impairment in-
volves both the direct effects of hyperglycemia on en-
dothelial cells and indirect impacts through growth fac-
tors, cytokines, and vasoactive substances. (83,84) The 
initial dysglycemia leads to functional and structural al-
terations in the vessel wall, ultimately resulting in diabe-
tic vascular complications. (84) 
Building on the understanding that gut microbiota signi-
ficantly impacts key diabetes markers, namely insulin re-
sistance, glycemic control, body weight, and hepatic lipid 
accumulation, it is plausible to anticipate that these micro-
bial communities also contribute to endothelial dysfunc-
tion and subsequent diabetic-associated vascular compli-
cations. Nevertheless, direct studies linking changes in the 
gut microbiota to vascular alterations in the context of 
T2D are limited. Notably, the role of gut microbiota in en-
dothelial dysfunction has been confirmed in other disea-
ses, underscoring its potential impact on vascular health, a 
topic that will be explored in the following section.

> CONTRIBUTION OF GUT MICROBIOTA TO 
ENDOTHELIAL DYSFUNCTION 

The endothelium, a monolayer of endothelial cells lining 
the inner surface of blood vessels, supports various 
functions crucial for vascular health and systemic phy-
siological balance. (85-88) Emerging evidence suggests 
that the gut microbiota plays a role in endothelial dys-
function, which is crucial for maintaining vessel integrity 
and overall body function, although the studies remain 
limited. (85,89) Importantly, endothelial function is a criti-
cal indicator of CVD risk, particularly relevant as cardio-
vascular diseases are the leading causes of mortality 
worldwide. (88) Unfortunately, in individuals with diabe-
tes, this risk is further exacerbated. (90) The underlying 
pathology in diabetes is complex, involving impaired 
signal transduction, reduced nitric oxide (NO) availabili-
ty, a critical factor for endothelial health, increased oxi-
dative stress, and heightened release of endothelium-
-derived constricting factors. (90-92) 
Given the vascular endothelium’s role as a critical regu-
lator of exchanges between the vascular wall and sur-
rounding tissues, it is notably sensitive to various endo-
genous mediators, including those derived from the 
microbiota. (85,88) The gut microbiota and their metaboli-
tes can impact the endothelium within the circulatory 
system via two main pathways. (85,88) Firstly, they can sti-
mulate the enteric nervous system, influencing brain 
centers that regulate cardiovascular functions. (93-95) Se-
condly, in T2D certain deleterious gut microbiota profi-
les and metabolites compromise gut integrity, resulting 
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in a leaky gut. This enables their entry into the bloods-
tream, where they come in contact with components of 
the circulatory system like the blood vessel wall, heart, 
and blood cells, leading to negative outcomes. (85,88,95) 

Therefore, interventions aimed at restoring a healthy 
gut microbiota have been proposed as strategies to 
ameliorate vascular dysfunction. (96)

Regarding specific metabolites, SCFAs are known to ha-
ve protective effects on endothelial function. (97) Conver-
sely, metabolites like TMAO and uremic toxins, both 
produced by gut microbiota, are harmful to endothe-
lium function. (85,88) 
TMAO is produced by gut microbiota, through the me-
tabolization of dietary precursors such as choline, carni-
tine, and phosphatidylcholine. These dietary precursors 
are firstly converted into trimethylamine, which is sub-
sequently absorbed into the bloodstream and transpor-
ted to the liver, where it undergoes oxidation catalyzed 
by the enzyme flavin-containing monooxygenase 3 to 
form TMAO. (98–100) TMAO is associated with endothelial 
dysfunction and higher CVD risk, serving as a biomarker 
for overall cardiovascular health. (101,102) High TMAO le-
vels activate NF-B, which triggers the upregulation of 
inflammatory signals and facilitates leukocyte adhesion 
to endothelial cells. (103,104) Furthermore, studies have de-
monstrated a correlation between elevated TMAO le-
vels and both endothelial dysfunction and atherosclero-
sis. (105) Additionally, mice fed a choline-rich diet and 
exhibiting high TMAO levels displayed significant endo-
thelial damage, dyslipidemia, and hyperglycemia. (106) 

Furthermore, TMAO downregulates the expression of 
IL-10, an anti-inflammatory cytokine that protects the 
endothelium from oxidative stress and induces reactive 
oxygen species (ROS) production while decreasing NO 
levels, which collectively damage vascular function. 
(107,108) Finally, concluding the discussion on the harmful 
impacts of elevated TMAO levels, one study indicated 
that high TMAO impairs the ability of damaged endo-
thelial cells to self-repair, leading to permanent endo-
thelial dysfunction. (109) Importantly, studies in humans 
disclosed that high TMAO levels are associated with an 
increased risk of T2D. (110-114)

Other metabolites that negatively impact endothelial 
function include uremic toxins, which are metabolic by-
products from the breakdown of aromatic amino acids, 
such as tyrosine, phenylalanine, and tryptophan by the 
gut microbiota. (109,115,116) In the clinic, some uremic toxins 
are considered a predictive biomarker for coronary athe-
rosclerosis. (116) These toxins induce endothelial dysfunc-
tion by activating NF-kB signaling. As a transcription fac-
tor, NF-kB upregulates the production of intercellular 

adhesion molecule 1 and monocyte chemoattractant 
protein-1, which are critical for cell-cell interactions and 
the recruitment of inflammatory cells, respectively. (117,118) 
Additionally, these toxins inhibit NO synthesis and eleva-
te ROS levels, altogether contributing to endothelial dys-
function and atherosclerosis. (119) 
This section summarized the role of gut microbiota me-
tabolites, including TMAO and uremic toxins, in endo-
thelial dysfunction (Figure 1). These findings highlight 
the complex interplay between gut health and diseases 
associated with endothelial dysfunction, emphasizing 
the potential for microbiota-targeted interventions to 
mitigate these deleterious effects. 

> CONCLUSION AND FUTURE PERSPECTIVES 

As we reflect on the advancements and ongoing challen-
ges within the field of gut microbiota and its impact on 
diabetes, it is clear that while significant strides have been 
made in understanding the intricate relationship be-
tween gut microbiota and diabetes, critical questions re-
main unanswered. These include discerning whether al-
terations in the microbiome are a cause or consequence 
of diabetes, defining the precise molecular mechanisms 
through which gut microbiota influence diabetes pro-
gression, and elucidating how changes in gut microbial 
ecology and successful engraftment post-transplantation 
impact metabolic outcomes in patients with obesity and/
or diabetes. Furthermore, there is a pressing need to bet-
ter define the optimal fecal microbial preparation, do-
sing, frequency, and method of delivery for FMT. These 
open questions highlight the importance of future stu-
dies to unravel the complex interactions at play, a crucial 
step for translating microbiota-based interventions into 
safe and effective treatments for diabetes and potentially 
revolutionizing global metabolic health. However, the 
road ahead requires that the effectiveness and safety of 
any microbiota-based intervention be rigorously establi-
shed through comprehensive clinical trials before its clini-
cal use can be endorsed. The coming years promise to 
unveil exciting insights that will undoubtedly contribute 
valuable pieces to the complex puzzle of diabetes mana-
gement. Looking ahead, with diabetes prevalence escala-
ting worldwide, the rapidly expanding domain of micro-
biota interventions, including the use of prebiotics, 
probiotics, and FMT, holds the promise of gaining regula-
tory approval for diabetes treatment (Figure 2). Never-
theless, it is crucial to emphasize that no microbiota-ba-
sed intervention should be endorsed for clinical use until 
its effectiveness and safety have been rigorously establi-
shed through comprehensive clinical trials. <
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Figure 1 - Gut Metabolites and Vascular Health: Drivers, Effects, or an Endless Loop? Interactions between gut metabolites and cardiovascular diseases 
represent a complex feedback loop, where the decrease in short-chain fatty acids (SCFAs) producing bacteria and the increase in the production of trime-
thylamine-N-oxide (TMAO) and uremic toxins exacerbate endothelial dysfunction, and disease states can in turn influence metabolite production. Created 
with BioRender.com.

Figure 2 - Future Directions in Gut Microbiota-Based Therapeutic Interventions. This figure illustrates three promising avenues for gut microbiota-
-based therapies aimed at combating metabolic diseases, highlighting the potential of prebiotics, fecal microbiota transplantation (FMT), and probiotics. Pre-
biotics, such as fiber-rich foods, nurture beneficial gut bacteria, fostering a healthy microbiome. FMT, transferring gut microbiota from healthy to metabolically 
compromised individuals, shows promise in resetting dysbiotic gut communities. Probiotics, including certain foods rich in probiotics and supplements contai-
ning healthy bacterial strains, aim to directly augment beneficial gut flora. While these interventions offer exciting prospects for future treatments, extensive re-
search and rigorous clinical trials are essential to fully understand their efficacy, safety, and long-term impacts on human health. Created with BioRender.com.
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